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Abstract. In this talk we propose an innovative extension of Principal Component Analysis
(PCA) that transcends the traditional assumption of data lying in Euclidean space, enabling
its application to data on Riemannian manifolds. The primary challenge addressed is the lack
of vector space operations on such manifolds. Fletcher et al., in their work Principal Geodesic
Analysis for the Study of Nonlinear Statistics of Shape, proposed Principal Geodesic Analysis
(PGA) as a geometric approach to analyze data on Riemannian manifolds, particularly ef-
fective for structured datasets like medical images, where the manifold’s intrinsic structure is
apparent. However, PGA’s applicability is limited when dealing with general datasets that lack
an implicit local distance notion. In this work, we introduce a generalized framework, termed
Riemannian Principal Component Analysis (R-PCA), to extend PGA for any data endowed
with a local distance structure. Specifically, we adapt the PCA methodology to Riemannian
manifolds by equipping data tables with local metrics, enabling the incorporation of manifold
geometry. This framework provides a unified approach for dimensionality reduction and statis-
tical analysis directly on manifolds, opening new possibilities for datasets with region-specific
or part-specific distance notions, ensuring respect for their intrinsic geometric and topological
properties.
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