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Finding the solutions to non-linear equations using the Interval/Newton 
Generalized Bisection Method 

Benito A. Stradi Granados1,2 
 

Abstract 
The Interval-Newton Generalized-Bisection method (IN/GB) was used to determine 
the three solutions for the Peng-Robinson (PR) equation of State (EOS).  At a 
temperature (𝑇𝑇) of 298.15 𝐾𝐾and pressure (𝑃𝑃) of  63.0 ∗ 105 𝑃𝑃𝑃𝑃, the computed 
molar volumes are 𝑣𝑣1 = 0.000194931,  𝑣𝑣2 = 0.0000996359 and 𝑣𝑣3 =
0.0000722323 𝑚𝑚

3

𝑚𝑚𝑚𝑚𝑚𝑚
.  This is an important application of the IN/GB because the PR 

EOS is the preferred equation in the petroleum industry to modelling single and 
multicomponent mixtures at conditions from medium to high pressures (i. e. ~1-100 
bar). The IN/GB finds the three specific volumes and it uses the molar volume 
domain (i. e. not initial guesses) as the single input.  These volumes (largest and 
smallest) correspond to the vapor and liquid phases that are present in separation 
processes. 
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Literature Review 
The objective of this paper is to discuss the implementation of the Interval 
Newton/Generalized Bisection (IN/GB) method to determine the roots of a single-
variable problem 𝑓𝑓(𝑥𝑥) = 0 in a domain where it has three solutions using only the 
independent variable domain as input (i.e. not individual initial guesses).   
 
The IN/GB method uses intervals instead of real numbers. Mathematical intervals 
are used rather than numbers in interval mathematics.  Interval arithmetic provides 
rules for traditional operations: sum, subtraction, multiplication and division.  The 
results are summarized in a set of rules that determine range of the resulting interval 
(Kearfott, 2023; Stradi et al. 2004) 
 
The IN/GB method solves nonlinear problems of the form 𝑓𝑓(𝑥𝑥) = 0.  For continuous 
functions, the IN/GB method finds all the roots of a problem with mathematical 
certainty.  There is a mathematical guarantee that all solutions are found.  
Consequently, if no solution is found then there is no solution in the domain of the 
search. The method is discussed in the literature over different applications and has 
been the subject of previous research (Kearfott, 2023; Stradi, 2013; Stradi & Haven, 
2013; Moore, et al. (2009); Stradi et al. 2004; Sengupta, 1981; Moore, 1966) 
 
The IN/GB method needs an interval-arithmetic programming environment which 
in turn requires programming in F77, C, or C++ with significant time invested in 
validations (Kearfott & Novoa, 1990).  In this paper the INTerval LABoratory 
program (Rump, 1999) is used to handle the basic interval arithmetic and reduce the 
code writing overhead. The IN/GB method is computationally intensive and 
generally requires long computation times.  In a cloud environment the processing 
time varies according to the available computational capacity (Stradi, 2020).  There 
are applications of interval arithmetic to other problems such as that of Fan et al. 
(2025) that used intervals to assess risk in maritime operations.  Zhang et al. (2024) 
developed an affine arithmetic algorithm for calculating short-circuit current 
intervals in distribution networks with distributed power sources while considering 
power fluctuations. Rossi et al. (2024) proposed the use of interval arithmetic for the 
verification of results generated from open-loop neural networks utilized in 
autonomous driving.  
 
The real-value Newton-Raphson (NR) method is used to find the roots of non-linear 
equations while requiring an initial guess.  It is a local method, and it is preferred 
due to its quadratic convergence in which the search procedure is repeated to 
determine each solution.  The IN/GB method uses interval operations, and it only 
needs the domain of the variable to execute a search to find the solutions, this is done 
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without additional reinitialization or initial guesses. Other papers have discussed 
interval arithmetic to determine the initial interval for the real-value NR method 
(Saskia et al., 2024). 
 
The computational process has four steps. First, the domain is substituted into the 
function 𝑓𝑓(𝑥𝑥) and the result gives the image of the domain of 𝑥𝑥 through 𝑓𝑓(𝑥𝑥) (i.e. 
the hull).  Second, if zero is contained by the image, then the process continues, there 
is a root in the domain.  Otherwise, it stops because there are not any solutions in the 
selected domain (Ichida & Fujii, 1979; Kearfott, 2023). 
 
Third, if the image of the domain is completely contained by the original domain, 
then there is only one solution, and it can be determined with the real-valued 
Newton-Raphson (NR) method (Neumaier, 1990).  The latter converges rapidly to 
the solution in the domain. 
 
Fourth, If the image of the domain is not completely contained, then the intersection 
of the original domain and the image domain is taken.  If the intersection interval is 
smaller in size than the original interval, then it is sent to a queue to be analyzed as 
the process moves forward, forming a stack of intervals.  If the intersection does not 
generate a smaller interval than the original then the original interval is bisected, and 
the new intervals join the stack and are used as search domains in later calculations.  
If there is no intersection, then there is no solution in the original interval. 
 
The process is repeated until all intervals in the stack are processed.  This procedure 
will render all the solutions in the independent variable domain within the specified 
tolerance. 
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Methodology 
The IN/GB method makes use of the INTLAB (INTerval LABoratory) environment 
(Rump, 1999) that provides interval arithmetic operations. The IN/GB method was 
programmed and used to solve an equation of state (EOS) for the molar volumes of 
heterogenous phases (liquid and vapor) in equilibrium for carbon dioxide.  This is a 
computation routinely performed in the petroleum industry to model separation 
processes such as distillation.  
 
At a given temperature and pressure, an equation of state (EOS) allows for the 
determination of the molar volume of a substance or mixture.  Cubic EOS under 
saturation conditions (where both liquid and vapor coexist) have three solutions: one 
corresponds to vapor (largest), another corresponds to liquid (smallest), and the 
intermediate solution has no physical interpretation.  
 
The Peng-Robinson EOS (Eq. 1) is used to determine the molar volumes of both 
vapor and liquid phases of carbon dioxide (Peng & Robinson, 1977; Smith et al., 
2017). 
 

𝑃𝑃 =
𝑅𝑅𝑅𝑅
𝑣𝑣 − 𝑏𝑏 +

𝑎𝑎
(𝑣𝑣 − 𝜀𝜀𝜀𝜀)(𝑣𝑣 − 𝜎𝜎𝜎𝜎)    (1) 

 
The form 𝑓𝑓(𝑥𝑥) = 0 in which the EOS is utilized for the IN/GB method is the 
following: 
 

𝑓𝑓(𝑣𝑣) =
𝑅𝑅𝑅𝑅
𝑣𝑣 − 𝑏𝑏 +

𝑎𝑎
(𝑣𝑣 − 𝜀𝜀𝜀𝜀)(𝑣𝑣 − 𝜎𝜎𝜎𝜎) − 𝑃𝑃 = 0 

 
 
The parameters for the EOS are the following: 
 

Parameter Value Units 
𝑅𝑅 

 
8.314 𝐽𝐽

𝑚𝑚𝑚𝑚𝑚𝑚.𝐾𝐾 

𝑃𝑃 
 

63.0 ∗ 105 𝑃𝑃𝑃𝑃 

𝑇𝑇 
 

298.15 𝐾𝐾 

𝜀𝜀 
 

1 − √2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
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𝜎𝜎 
 

1 + √2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝑎𝑎 
 

0.402036 𝑃𝑃𝑃𝑃.𝑚𝑚6

𝑚𝑚𝑚𝑚𝑚𝑚2  

𝑏𝑏  
 

2.66646 ∗ 10−5 𝑚𝑚3

𝑚𝑚𝑚𝑚𝑚𝑚 
Table 1.  Parameters used in the Peng-Robinson equation of state 

 
The domain of the search and initial middle point are the following: 
 

Domain limit Value Units 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 1.9 ∗ 𝑏𝑏 

 
0.0000506628 𝑚𝑚3

𝑚𝑚𝑚𝑚𝑚𝑚 
𝑣𝑣𝑚𝑚𝑎𝑎𝑎𝑎 = 9.0 ∗ 𝑏𝑏 

 
0.000239982 𝑚𝑚3

𝑚𝑚𝑚𝑚𝑚𝑚 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 9.0 ∗ 𝑏𝑏 

 
0.145322 𝑚𝑚3

𝑚𝑚𝑚𝑚𝑚𝑚 
Table 2.  Domain of search for the volume solution of the Peng-Robinson equation 

of state 
 
The general procedure for the n-dimensional problem computes the image of the 
original interval through Equation 2, where 𝑥𝑥 is the variable (that in our case is the 
molar volume 𝑣𝑣) where the Gauss Seidel method is used (Hansen, 1992; Kearfott, 
1996): 
 

𝑋𝑋(𝑖𝑖 + 1) =
−𝑓𝑓�𝑋𝑋0𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖)� − ∑ 𝐽𝐽(𝑖𝑖,𝑘𝑘)𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

∗ (𝑋𝑋0(𝑘𝑘) − 𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘))

𝐽𝐽(𝑖𝑖, 𝑖𝑖)
+ 𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖)     (2) 

 
𝑋𝑋𝑁𝑁(𝑖𝑖) = 𝑋𝑋(𝑖𝑖 + 1) ∩ 𝑋𝑋0(𝑖𝑖)       (3) 

 
where 
 
𝑋𝑋(𝑖𝑖 + 1) is the (𝑖𝑖 + 1) estimation of the solution for the interval variable 𝑋𝑋(𝑖𝑖). 
𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) is the value of the midpoint of the initial interval 𝑋𝑋0(𝑖𝑖). 
𝑋𝑋0(𝑘𝑘) is the initial interval for the variable 𝑋𝑋(𝑘𝑘). 
𝑓𝑓(𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖)) is the function evaluated at the midpoint of the interval variable 𝑋𝑋(𝑖𝑖). 
𝐽𝐽(𝑖𝑖,𝑘𝑘) is the interval number that occupies the i-th row and k-th column position of 
the interval Jacobian matrix evaluated at the initial interval conditions 𝑋𝑋0. 
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𝑋𝑋𝑁𝑁(𝑖𝑖) is the intersection of the computed interval 𝑋𝑋(𝑖𝑖 + 1) and 𝑋𝑋0(𝑖𝑖), the result 
becomes the initial interval for the next iteration.  The process continues until the 
solution is computed to a specified tolerance. 
 
The equations 2-3 reduce to the following for one dimension (Eqs. 4-5): 
 

𝑋𝑋1 = 𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚 +
−𝑓𝑓(𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚)
𝑓𝑓′(𝑋𝑋0)        (4) 

 
𝑋𝑋𝑁𝑁 = 𝑋𝑋1 ∩ 𝑋𝑋0                              (5) 

 
where 
𝑓𝑓′(𝑋𝑋0) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑋𝑋0 
𝑋𝑋𝑁𝑁 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
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Results and Discussion 
The search starts with the following molar volume interval: 
 
Initial molar volume interval: 
 

𝑋𝑋0 = [1.9𝑏𝑏, 9𝑏𝑏] 
 
the specific numerical values are: 
 

𝑋𝑋0 = [0.0000506628, 0.000239982] 
 
The function evaluation of the initial interval contains zero, and consequently the 
computations may proceed: 
 

𝑓𝑓(𝑋𝑋0) = [−8.28936 ∗ 107, 9.12221 ∗ 107] 
 
The initial middle point is: 
 

𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚 = 0.145322 
 
The function evaluation of the mid-point is determined using interval arithmetic: 
 

−𝑓𝑓(𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚) = 3.12356 ∗ 105 
 
In a multivariate problem the Jacobian matrix would be computed next, however in 
a problem with one variable, the first order derivative is the only derivative needed: 
 

𝑓𝑓′(𝑋𝑋0) = [−0.429136 ∗ 1013, 1.02678 ∗ 1013  ] 
 
The derivative contains zero and consequently generates two disjoint sets to consider 
in the computations: 
 

−𝑓𝑓(𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚)
𝑓𝑓′(𝑋𝑋0) = 

 
[−∞,−0.304211 ∗ 10−7] ∪ [0.727873 ∗ 10−7,∞] 

 
𝑋𝑋1 − 𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚 = 

[−∞,−0.304211 ∗ 10−7] ∪ [0.727873 ∗ 10−7,∞] 
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𝑋𝑋1 = 

[−∞,−0.304211 ∗ 10−7] ∪ [0.727873 ∗ 10−7,∞] + 𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚 
 
The intersection of each of the intervals generated with the original interval 
generates two new domains of search: 
 

𝑋𝑋1 = [−∞, 0.000145292] ∪ [0.000145395,∞] 
 
The intersection of original interval and its image through the IN/GB is computed: 
 

𝑋𝑋𝑁𝑁 = 𝑋𝑋1 ∩ 𝑋𝑋0 
 

𝑋𝑋𝑁𝑁 = �[−∞, 0.000145292] ∩ [0.0000506628, 0.000239982]
[0.000145395,∞] ∩ [0.0000506628, 0.000239982]  

 
These are the two new domains of search: 
 

𝑋𝑋𝑁𝑁 = �[0.0000506628, 0.000145292]
[0.000145395, 0.000239982]  

 
The difference between the upper and lower limit for each interval is larger than the 
tolerance (i. e. 1*10-8), and consequently the intervals are halved.  The process will 
restart with theese new intervals until the specified tolerance is reached.  
 
The resulting intervals from bisection are the following: 
 

𝑋𝑋𝑁𝑁 = �[0.0000506628, 0.0000979774], [0.0000979774, 0.000145292] 
[0.000145395,0.000192689], [0.000192689, 0.000239982]  

 
The computational overhead is evidently growing, and the procedure is automated 
to deal with an increasing queue of intervals to test.   
 
The following intervals generate three the solutions of the problem.  These are taken 
from the stack generated by the IN/GB method.  The other intervals in the stack are 
eventually discarded.  
 
Interval 1 from the interval stack: 
 

𝑋𝑋0 = [0.000192689, 0.000239982] 
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𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚 = 0.000216334 

 
𝑓𝑓(𝑋𝑋0) = [−3.2898 ∗ 106, 2.8607 ∗ 106] 

 

𝑋𝑋1 = 𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚 +
−𝑓𝑓(𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚)
𝑓𝑓′(𝑋𝑋0)       (3) 

 
 

−𝑓𝑓(𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚) = 2.07471 ∗ 105 

 
𝑓𝑓′(𝑋𝑋0) = [−5.36017 ∗ 1010, 4.38620 ∗ 1010  ] 

 
The ratio of the function and its derivative generate two disjoint sets: 
 

−𝑓𝑓(𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚)
𝑓𝑓′(𝑋𝑋0) = 

 
[−∞,−0.387060 ∗ 10−5] ∪ [0.473008 ∗ 10−5,∞] 

 
𝑋𝑋1 − 𝑥𝑥0𝑚𝑚𝑚𝑚𝑚𝑚 = 

 
[−∞,−0.387060 ∗ 10−5] ∪ [0.473008 ∗ 10−5,∞] 

 
 
The image of the initial interval through the IN/GB method is the following: 

𝑋𝑋1 = [−∞, 0.000212464] ∪ [0.000221065,∞] 
 
 

𝑋𝑋𝑁𝑁 = 𝑋𝑋1 ∩ 𝑋𝑋0 
 

𝑋𝑋𝑁𝑁 = �[−∞, 0.000212464] ∩ [0.000192688, 0.000239982]
[0.000221065,∞] ∩ [0.000192688, 0.000239982]  

 

𝑋𝑋𝑁𝑁 = �[0.000192688, 0.000212464]
[0.000221065, 0.000239982] 
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The procedure continues with bisection until the process signal that the interval 
generated is fully contained by the original domain of that iteration. 
 
The interval from the IN/GB method is 
 

𝑋𝑋0 = [0.000194603, 0.000196518] 

 
The image generated is  
 

𝑋𝑋1 = [0.0000194670, 0.000195074] 
 
Since the original interval (𝑥𝑥0) contains its image (𝑥𝑥1) (𝑥𝑥1 ⊂ 𝑥𝑥0) then the real 
valued NR method is implemented to finish the computations: 
 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜: 
 

𝑥𝑥1 = 𝑥𝑥0 +
−𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0)  

 
𝑥𝑥0 = 0.000194872 

 
−𝑓𝑓(𝑥𝑥0) = −539.124852 

 
𝑓𝑓′(𝑥𝑥0) = −9.17739 ∗ 109 

 
𝑥𝑥1 = 0.000194931 

 
when the image by the IN/GB method is fully contained by the original interval, the 
use of NR method converges to the single root within the interval, this is graphically 
depicted in Figure 1. 
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Figure 1.  (First root) Intersection is fully contained in original interval. 
(The first five non-zero digits are shown, the rest are omitted for clarity) 

 
The initial point for the real-valued NR method is the middle point of the intersection 
interval, the Newton-Raphson method iterates two times to reach the solution: 
 
The procedure continues with two iterations to achieve the final solution with the 
specified tolerance (i. e. 1*10-8). 
 
The solution provides the first of the three volumes: 
 

𝑥𝑥1 = 0.000194931 
𝑓𝑓(𝑥𝑥1) = −3.725290 ∗ 10−9 

 
 
The error measurement is computed as follows: 
 

𝑒𝑒 = �(𝑥𝑥1 − 𝑥𝑥0)2            (5) 
 
The numerical value of the error is: 
 

𝑒𝑒 = 1.177206 ∗ 10−11 
 
 
The procedure continues to determine the second root just as was done previously: 
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Figure 2.  (Second root) Intersection is fully contained in original interval 

 
This is the interval from the NR method 
 

𝑋𝑋0 = [0.0000995470, 0.0000996780] 
 
The image generated is  
 

𝑋𝑋1 = [0.0000996330, 0.0000996397] 
 
Since the original interval (𝑥𝑥0) contains its image (𝑥𝑥1) (𝑥𝑥1 ⊂ 𝑥𝑥0) then the real 
valued NR method is implemented to finish the computations: 
 
The second solution is found with a single iteration of the real-valued NR: 
 

𝑥𝑥1 = 0.0000996359 
𝑓𝑓(𝑥𝑥1) = −1.71848 ∗ 10−5 

 
𝑒𝑒 = 4.66449 ∗ 10−10 

 
 
The process continues to determine the third root: 
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Figure 3.  (Third root) Intersection is fully contained in original interval 

 
This is the interval from the IN/GB method 
 

𝑋𝑋0 = [0.0000722074, 0.0000723050] 
 
The image generated is  
 

𝑋𝑋1 = [0.0000722294, 0.0000722345] 
 
Since the original interval (𝑥𝑥0) contains its image (𝑥𝑥𝑁𝑁) (𝑥𝑥1 ⊂ 𝑥𝑥0) then the real 
valued NR method is implemented to finish the computations: 
 
The third solution is found with a single iteration of the real-valued NR: 
 

𝑥𝑥1 = 0.0000722323 
𝑓𝑓(𝑥𝑥1) = 4.888549 ∗ 10−4 

 
 

𝑒𝑒 = 3.120807 ∗ 10−10 
 
The solutions found by the IN/GB are summarized on Table 3. 
 
 
 
 
 
 
 
 
 



14 | P a g e  
 

 
 
Search domain 
[𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎 =1.9 b, 
𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎 =9.0 b] 

�
𝒎𝒎𝟑𝟑

𝒎𝒎𝒎𝒎𝒎𝒎�
 

Iterations 
real-

valued 
NR 

method 

Solution 
molar volume 

𝒗𝒗  

�
𝒎𝒎𝟑𝟑

𝒎𝒎𝒎𝒎𝒎𝒎�
 

Root value 
(𝒇𝒇(𝒗𝒗) = 𝟎𝟎) 

Error 
𝒆𝒆 

�(𝑥𝑥1 − 𝑥𝑥0)2 

[0.0000506628, 
 0.000239982] 
 

2 0.000194931 −3.72529
∗ 10−9 

1.17721
∗ 10−11 

 1 0.0000996358 
 

−1.71849
∗ 10−5 

4.66449
∗ 10−10 

 1 0.0000722322 
 

4. .88855
∗ 10−4 

3.12081
∗ 10−10 

Table 3.  Roots for the Peng-Robinson EOS utilizing the IN/GB method 
 

 
Figure 1.  Function and its roots determined by the IN/GB method 

(The arrows indicate the locations of the roots) 
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The domain of search is subdivided into smaller segments until these segments are 
thinner than the specified tolerance or the real-valued NR method is called.  The 
interval size evolution with root computation is shown in Figure 2. 
 

 
Figure 2.  Interval domains for roots 1-3 when the real-valued NR process is called. 
[the black circle indicates the domain that was used to determine corresponding root] 
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Conclusions 

1.  The three molar volumes for the Peng-Robinson were determined by the IN/GB 
method.  The values are (𝑣𝑣=) 0.000194931, 0.0000996358, and 0.0000722322 
�𝒎𝒎

𝟑𝟑

𝒎𝒎𝒎𝒎𝒎𝒎
�. 

2.  The process proceeds by means of the Interval Newton (IN) method that generates 
an interval image that has to have smaller dimensions.  Bisection is applied when 
the original interval does not become. 
3.  An implementation of the IN/GB methods using INTLAB provides the interval 
arithmetic necessary to solve increasingly complex problems with a smaller 
programming overhead.  
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