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Abstract
The Interval-Newton Generalized-Bisection method (IN/GB) was used to determine
the three solutions for the Peng-Robinson (PR) equation of State (EOS). At a
temperature (T) of 298.15 Kand pressure (P) of 63.0 x 10° Pa, the computed
molar volumes are wv; =0.000194931, v, =0.0000996359 and v; =

3
0.0000722323 % This is an important application of the IN/GB because the PR

EOS is the preferred equation in the petroleum industry to modelling single and
multicomponent mixtures at conditions from medium to high pressures (i. e. ~1-100
bar). The IN/GB finds the three specific volumes and it uses the molar volume
domain (i. e. not initial guesses) as the single input. These volumes (largest and
smallest) correspond to the vapor and liquid phases that are present in separation
processes.
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Literature Review
The objective of this paper is to discuss the implementation of the Interval
Newton/Generalized Bisection (IN/GB) method to determine the roots of a single-
variable problem f(x) = 0 in a domain where it has three solutions using only the
independent variable domain as input (i.e. not individual initial guesses).

The IN/GB method uses intervals instead of real numbers. Mathematical intervals
are used rather than numbers in interval mathematics. Interval arithmetic provides
rules for traditional operations: sum, subtraction, multiplication and division. The
results are summarized in a set of rules that determine range of the resulting interval
(Kearfott, 2023; Stradi et al. 2004)

The IN/GB method solves nonlinear problems of the form f(x) = 0. For continuous
functions, the IN/GB method finds all the roots of a problem with mathematical
certainty. There is a mathematical guarantee that all solutions are found.
Consequently, if no solution is found then there is no solution in the domain of the
search. The method is discussed in the literature over different applications and has
been the subject of previous research (Kearfott, 2023; Stradi, 2013; Stradi & Haven,
2013; Moore, et al. (2009); Stradi et al. 2004; Sengupta, 1981; Moore, 1966)

The IN/GB method needs an interval-arithmetic programming environment which
in turn requires programming in F77, C, or C++ with significant time invested in
validations (Kearfott & Novoa, 1990). In this paper the INTerval LABoratory
program (Rump, 1999) is used to handle the basic interval arithmetic and reduce the
code writing overhead. The IN/GB method is computationally intensive and
generally requires long computation times. In a cloud environment the processing
time varies according to the available computational capacity (Stradi, 2020). There
are applications of interval arithmetic to other problems such as that of Fan ef al.
(2025) that used intervals to assess risk in maritime operations. Zhang et al. (2024)
developed an affine arithmetic algorithm for calculating short-circuit current
intervals in distribution networks with distributed power sources while considering
power fluctuations. Rossi ef al. (2024) proposed the use of interval arithmetic for the
verification of results generated from open-loop neural networks utilized in
autonomous driving.

The real-value Newton-Raphson (NR) method is used to find the roots of non-linear
equations while requiring an initial guess. It is a local method, and it is preferred
due to its quadratic convergence in which the search procedure is repeated to
determine each solution. The IN/GB method uses interval operations, and it only
needs the domain of the variable to execute a search to find the solutions, this is done

2|Page



without additional reinitialization or initial guesses. Other papers have discussed
interval arithmetic to determine the initial interval for the real-value NR method
(Saskia et al., 2024).

The computational process has four steps. First, the domain is substituted into the
function f(x) and the result gives the image of the domain of x through f(x) (i.e.
the hull). Second, if zero is contained by the image, then the process continues, there
is a root in the domain. Otherwise, it stops because there are not any solutions in the
selected domain (Ichida & Fujii, 1979; Kearfott, 2023).

Third, if the image of the domain is completely contained by the original domain,
then there is only one solution, and it can be determined with the real-valued
Newton-Raphson (NR) method (Neumaier, 1990). The latter converges rapidly to
the solution in the domain.

Fourth, If the image of the domain is not completely contained, then the intersection
of the original domain and the image domain is taken. If the intersection interval is
smaller in size than the original interval, then it is sent to a queue to be analyzed as
the process moves forward, forming a stack of intervals. If the intersection does not
generate a smaller interval than the original then the original interval is bisected, and
the new intervals join the stack and are used as search domains in later calculations.
If there is no intersection, then there is no solution in the original interval.

The process is repeated until all intervals in the stack are processed. This procedure

will render all the solutions in the independent variable domain within the specified
tolerance.
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Methodology
The IN/GB method makes use of the INTLAB (INTerval LABoratory) environment
(Rump, 1999) that provides interval arithmetic operations. The IN/GB method was
programmed and used to solve an equation of state (EOS) for the molar volumes of
heterogenous phases (liquid and vapor) in equilibrium for carbon dioxide. This is a
computation routinely performed in the petroleum industry to model separation
processes such as distillation.

At a given temperature and pressure, an equation of state (EOS) allows for the
determination of the molar volume of a substance or mixture. Cubic EOS under
saturation conditions (where both liquid and vapor coexist) have three solutions: one
corresponds to vapor (largest), another corresponds to liquid (smallest), and the
intermediate solution has no physical interpretation.

The Peng-Robinson EOS (Eq. 1) is used to determine the molar volumes of both
vapor and liquid phases of carbon dioxide (Peng & Robinson, 1977; Smith et al.,
2017).

RT a

Pt o—amw=on P

The form f(x) = 0in which the EOS is utilized for the IN/GB method is the
following:

RT a

f(v):v—b+(v—sb)(v—0b)_P=0

The parameters for the EOS are the following:

Parameter Value Units
R 8.314 Ji
mol.K
P 63.0 * 10° Pa
T 298.15 K
£ 1—1+/2 dimensionless
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o 14++2 dimensionless
a 0.402036 Pa.m®
mol?
b 2.66646 x 107> m3
mol

Table 1. Parameters used in the Peng-Robinson equation of state

The domain of the search and initial middle point are the following:

Domain limit Value Units
Vmin = 1.9 b 0.0000506628 m3
mol
Vmax = 9.0 % b 0.000239982 m3
mol
Vmia = 9.0 b 0.145322 m3
mol
Table 2. Domain of search for the volume solution of the Peng-Robinson equation
of state

The general procedure for the n-dimensional problem computes the image of the
original interval through Equation 2, where x is the variable (that in our case is the
molar volume v) where the Gauss Seidel method is used (Hansen, 1992; Kearfott,
1996):

~f(XOmia (D)) = Zk=1J (i, k) * (X0(k) — X0y (k))

X(i+1)= k2l 70D + %0 (D) (2)

Xy@)=x({+1)nx0() (3
where

X(i+ 1) isthe (i + 1) estimation of the solution for the interval variable X (i).
x0,,;4 (1) is the value of the midpoint of the initial interval X0(7).

X0(k) is the initial interval for the variable X (k).

f(x0,,,;4 (1)) is the function evaluated at the midpoint of the interval variable X ().
J(i, k) is the interval number that occupies the i-th row and k-th column position of
the interval Jacobian matrix evaluated at the initial interval conditions X0.
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Xy (i) is the intersection of the computed interval X (i + 1) and X0(i), the result
becomes the initial interval for the next iteration. The process continues until the
solution is computed to a specified tolerance.

The equations 2-3 reduce to the following for one dimension (Egs. 4-5):

_f(xomid)
f'(X0)

X1 = xX0miq + (4)

where
f'(X,) is the firstorder derivative evaluated at the initial interval X0
Xy is the interval number intersection used in the succeeding computations
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Results and Discussion
The search starts with the following molar volume interval:

Initial molar volume interval:
X0 = [1.9b,9b]
the specific numerical values are:
X0 =[0.0000506628,0.000239982]

The function evaluation of the initial interval contains zero, and consequently the
computations may proceed:

f(X0) =[—8.28936 x 107,9.12221 * 107]
The initial middle point is:
X0, = 0.145322
The function evaluation of the mid-point is determined using interval arithmetic:
—f(x0,;4) = 3.12356 * 10°

In a multivariate problem the Jacobian matrix would be computed next, however in
a problem with one variable, the first order derivative is the only derivative needed:

£'(X0) = [-0.429136 = 1013,1.02678 * 1013 ]

The derivative contains zero and consequently generates two disjoint sets to consider
in the computations:

—f (Opnia) _
f'(X0)

[—00,—0.304211 * 10~7] U [0.727873 * 1077, 0]

X1 —X0piqg =
[—o0,—0.304211 = 10_7] U [0.727873 = 1077, 0]
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X1 ==
[—00,—0.304211 * 10~7] U [0.727873 * 10~7, 0] + %0,

The intersection of each of the intervals generated with the original interval
generates two new domains of search:

X; = [—,0.000145292] U [0.000145395, 0]
The intersection of original interval and its image through the IN/GB is computed:
XN == X1 N XO

v {[_00,0.000145292] N [0.0000506628,0.000239982]
N =1 [0.000145395, 0] N [0.0000506628,0.000239982]

These are the two new domains of search:

X _{[0.0000506628,0.000145292]
N~ 110.000145395,0.000239982]

The difference between the upper and lower limit for each interval is larger than the
tolerance (i. e. 1¥10®), and consequently the intervals are halved. The process will
restart with theese new intervals until the specified tolerance is reached.

The resulting intervals from bisection are the following:

P {[0.0000506628,0.0000979774], [0.0000979774,0.000145292]
N 1[0.000145395,0.000192689], [0.000192689, 0.000239982]

The computational overhead is evidently growing, and the procedure is automated
to deal with an increasing queue of intervals to test.

The following intervals generate three the solutions of the problem. These are taken
from the stack generated by the IN/GB method. The other intervals in the stack are
eventually discarded.

Interval 1 from the interval stack:

X0 =[0.000192689,0.000239982]
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x0,,;4 = 0.000216334
f£(X0) = [—3.2898 x 10°,2.8607 * 10°]

_f(xomid)

X1 = X0 + BTCOR (3)

—F(x0,;4) = 2.07471 * 10°
F'(X0) = [~5.36017 % 101°,4.38620 * 1010 ]

The ratio of the function and its derivative generate two disjoint sets:

_f(xomid) _
f'(X0)

[—c0,—0.387060 * 107>] U [0.473008 * 107>, 0]
X1 = x0piq =
[—00,—0.387060 * 107>] U [0.473008 * 1075, 0]
The image of the initial interval through the IN/GB method is the following:
X; = [—,0.000212464] U [0.000221065, o]
XN == X1 N XO

v {[—00,0.000212464] N [0.000192688,0.000239982]
N =1 [0.000221065, %] N [0.000192688,0.000239982]

X _{[0.000192688,0.000212464]
¥ = 1[0.000221065, 0.000239982]
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The procedure continues with bisection until the process signal that the interval
generated is fully contained by the original domain of that iteration.

The interval from the IN/GB method is

X0 =1[0.000194603,0.000196518]

The image generated is
X; = [0.0000194670,0.000195074]

Since the original interval (x0) contains its image (x;) (x; C X;) then the real
valued NR method is implemented to finish the computations:

Initial point and function values for the real — valued NR method:

—f (x0)
f'(x0)

xo = 0.000194872

x1=x0+

—f(x9) = —539.124852
f'(xg) = —9.17739 * 10°
x; = 0.000194931
when the image by the IN/GB method is fully contained by the original interval, the

use of NR method converges to the single root within the interval, this is graphically
depicted in Figure 1.
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Intersection xN fully contained by the original interval x0
NR 19493

19466 19507

Figure 1. (First root) Intersection is fully contained in original interval.
(The first five non-zero digits are shown, the rest are omitted for clarity)

The initial point for the real-valued NR method is the middle point of the intersection
interval, the Newton-Raphson method iterates two times to reach the solution:

The procedure continues with two iterations to achieve the final solution with the
specified tolerance (i. e. 1*107).

The solution provides the first of the three volumes:

x; = 0.000194931
f(x,) = —3.725290 % 10~°

The error measurement is computed as follows:

e =/ (x; —x)? ()

The numerical value of the error is:

e =1177206 x 10711

The procedure continues to determine the second root just as was done previously:
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Intersection xN fully contained by the original interval x(0
NR 99636

99633 99640

xN
99547 99678

Figure 2. (Second root) Intersection is fully contained in original interval

This is the interval from the NR method

X0 = [0.0000995470,0.0000996780]
The image generated is

X; =[0.0000996330,0.0000996397]

Since the original interval (x,) contains its image (x;) (x; C x,) then the real
valued NR method is implemented to finish the computations:

The second solution is found with a single iteration of the real-valued NR:

x; = 0.0000996359
f(x,) = —1.71848 x 1075
e = 4.66449 x 10710

The process continues to determine the third root:
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Intersection xN fully contained by the original interval x(
NR 72232

72229

xN
72207 72305

Figure 3. (Third root) Intersection is fully contained in original interval

72234

This is the interval from the IN/GB method

X0 =1[0.0000722074,0.0000723050]
The image generated is

X; =[0.0000722294,0.0000722345]

Since the original interval (x0) contains its image (xy) (x; C x,) then the real
valued NR method is implemented to finish the computations:

The third solution is found with a single iteration of the real-valued NR:

x, = 0.0000722323
f(x,) = 4.888549 * 10~

e = 3.120807 = 10710

The solutions found by the IN/GB are summarized on Table 3.
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Search domain | Iterations Solution Root value Error
[Vinin =1.9 b, real- molar volume | (f(v) =0) e
Vimax =9.0 b] valued v (x; — x0)?

m3 NR m3
<m P l) method <m>

[0.0000506628, 2 0.000194931 —3.72529 1.17721
0.000239982] x*107° 10711
1 0.0000996358 —1.71849 4.66449

*107° * 10710

1 0.0000722322 4..88855 3.12081

x* 1074 * 10710

Table 3. Roots for the Peng-Robinson EOS utilizing the IN/GB method

g =

G

A

f(v)
I

Figure 1. Function and its roots determined by the IN/GB method

.z -
a2

(The arrows indicate the locations of the roots)
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The domain of search is subdivided into smaller segments until these segments are
thinner than the specified tolerance or the real-valued NR method is called. The
interval size evolution with root computation is shown in Figure 2.

10 Stack sizes when NR is called
2.5 T T T T T T T T
q
2r i
¥
= 15
[+ D % i
2
=]
=
2
.&E’ 1 @ ) H
(@)
0.5% * i
0 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

root number

Figure 2. Interval domains for roots 1-3 when the real-valued NR process is called.
[the black circle indicates the domain that was used to determine corresponding root]
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Conclusions

1. The three molar volumes for the Peng-Robinson were determined by the IN/GB
method. The values are (v=) 0.000194931, 0.0000996358, and 0.0000722322

m3
(et
2. The process proceeds by means of the Interval Newton (IN) method that generates
an interval image that has to have smaller dimensions. Bisection is applied when
the original interval does not become.
3. An implementation of the IN/GB methods using INTLAB provides the interval
arithmetic necessary to solve increasingly complex problems with a smaller
programming overhead.
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